
Toward User Interface Virtualization:  

Legacy Applications and Innovative Interaction Systems 
 

Guillaume Besacier
1, 2 

guillaume.besacier@limsi.fr 
 

1
 LRI - Université Paris-Sud & CNRS 
Bâtiment 490, Université Paris-Sud 

91405 Orsay Cedex, France 

Frédéric Vernier
2 

frederic.vernier@limsi.fr 
 

2
 LIMSI-CNRS 

BP 133 
91403 Orsay Cedex, France 

 

ABSTRACT 
Single-user, desktop-based computer applications are pervasive in 
our daily lives and work. The prospect of using these applications 
with innovative interaction systems, like multi-touch tabletops, 
tangible user interfaces, large displays or public/private displays, 
would enable large scale field studies of these technologies, and 
has the potential to significantly improve their usefulness and, in 
turn, their availability. This paper focuses on the architectural 
requirements, design, and implementation of such a technology. 
First, we review various software technologies for using a single-
user desktop application with a different model of user inputs and 
graphical output. We then present a generic technique for using 
any closed-source or open-source application with different input 
and output devices. In our approach, the application is separated 
from the user input and graphical output subsystem. The core part 
of the application runs in a system-specific virtual environment. 
This virtual environment exposes the same API as the removed 
standard subsystems. This eliminates the need to rewrite the 
“legacy” application and provides high performances by using the 
application native way to communicate with the system. 

ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 

General terms: Design. 

Keywords: Novel Interaction Systems, Toolkit, Legacy 
Applications 

1. INTRODUCTION 
Single-user, desktop-based computer applications are pervasive in 
our daily lives and work. Being able to use these applications with 
novel interactive systems, like multi-touch tabletops, tangible user 
interfaces, large displays or public/private displays, is a 
requirement for a large deployment of these systems in a 
production environment. Indeed, these applications, whether they 
are widely used or specialized business applications, are essential 
to their users. 

Widely used applications (word processor, Internet browser, etc.) 
could be rewritten from scratch for each new system. Some 
projects have created clones of these applications for their 

research prototypes. It would require a large amount of work for 
each application and each system and is, in our opinion, out of the 
scope of most research projects. 

Specialized business applications, on the other end, don’t even 
have this possibility. It seams businesses will not massively 
embrace, for example, tabletop computing if it doesn’t interface 
with its existing applications for workflow, modeling, 
productivity, asset management, accounting, etc. These 
applications may be specific to a company, even developed in-
house: it would be unreasonable to consider rewriting each one of 
them for each new platform. 

On the other hand, novel interactive systems use new kinds of 
hardware, beyond the desktop keyboard, mouse and screen, that 
introduce new possibilities and new challenges for user interface. 
For example, a high-resolution widescreen display wall [ 7] is not 
well suited for vertical scrolling in a word processor: displaying 
several full-height pages side by side seems better than full-width 
pages on top of each other. User input may be fundamentally 
different, yet the actions offered by each application are the same 
than on the desktop. With a tangible user interface, one could use 
a tangible interactor to represent a folder [ 23], and put the 
interactor on a document window to trigger the action “save this 
document to that folder”, instead of clicking on a toolbar “save” 
button and selecting a folder with a dialog box. 

On a shorter-term scale, existing applications on novel interactive 
systems would enable large scale field studies. Some novel 
interactions or systems may not fully realize their potential until 
they are used by real users with real applications and data. This 
practice of long-term field studies has long been part of the 
scientific procedure, and has been used with success by HCI 
researchers (e.g. [ 10,  3] studies lasted several months). A 
technology such as the ones reviewed or proposed in this article, 
acting like “glue” between the research prototype and the users’ 
activities, would be a breakthrough in bringing this tool to the 
novel interactive system researcher. 

The purpose of this article is to discuss potential technologies to 
run existing desktop applications on the novel interactive systems 
that use a different model of user inputs and graphical output. The 
technology should be able to smoothly integrate the legacy 
applications in the novel interactive system, by modifying the 
application processing of its user inputs and the application 
graphical user output rendering. 

It presents a complex challenge of balancing the functionalities, 
performances and amount of this “glue” between the existing 
applications and the novel interactive system. We think such a 
technology would indeed be a useful tool available to the 
interactive systems researcher, but also presents some very 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
EICS’09, July15–17, 2009, Pittsburg, Pennsylvania, USA. 
Copyright 2009 ACM 978-1-60558-600-7/09/07...$5.00. 



 

interesting problems in its own right. A parallel could be drawn 
with the physicist toolbox which conception requires large 
amounts of research, before it is even used for actual physics 
researches. For example, in the search for the “God particle”, a 
bubble chamber is used. This tool was invented in the 50’s by 
Donald A. Glaser, for which he was awarded a Nobel Prize in 
Physics. 

We then present in details the user interface toolkit rewriting 
technology. It emulates the standard toolkit the application knows 
how to “talk” to and adapts the API calls for the innovative 
interaction system toolkit. We implemented two proof-of-concept 
implementations with this technology. In the first one, we 
extended Microsoft Windows window management with 
innovative window management techniques like rotating 
windows, peeling back, stacking, zooming, etc. The second test 
removes the pull-down and popup menus of an application and 
sends them to another graphical environment. The control 
environment displays the application menus in a suitable way and 
sends back menu events to the applications. 

2. SOFTWARE TECHNOLOGIES FOR 

USING A SINGLE-USER DESKTOP APPLI-

CATION WITH A DIFFERENT MODEL OF 

USER INPUTS AND GRAPHICAL OUTPUT 
We identified several technologies to achieve our goal of using 
existing desktop applications with the novel interactive systems. 
Note that we call “technology” a set of software constructs that 
would allow us to achieve our goal, while we call the 
implementation details and the individual software construct 
“technique”. These technologies purpose is to link the application 
with the environment provided by the innovative system. All these 
technologies interface with the legacy applications in some 
original ways not envisioned by the applications developers. The 
position of this interface in the input processing chain and the 
graphical rendering chain is the primary difference between the 
technologies. To compare them, we identified several metrics. 

2.1 Metrics 

2.1.1 Data Structure 
The first metric is the amount of structure in the data exchanged 
with the application. It can range from completely unstructured 
data to fully structured data. Structured output data may be a 
description of each component of the interface and their relations 
to each other, or a functional description of the application 
internal data and the available actions. Unstructured data, on the 
other hand, may be a bitmap of the application windows, as 
rendered on the desktop computer screen. For input, structured 
data revolves around sending high level commands, either 
interaction oriented (e.g. the technology inserts a “menu item have 
been selected” event in the application event queue, without 
justifying its source in a mouse click, a keyboard shortcut, a vocal 
command, or the novel input device) or action oriented (e.g. “load 
a file” event). In both cases, it requires some sort of information 
about the application interface or actions: it needs to know what 
actions the application supports, what format the application 
expects, etc. Sufficiently structured output data provide this 
information. Unstructured input data is achieved by simulating the 

physical devices the application expects (most likely a mouse and 
a keyboard). 

2.1.2 Flexibility 
The second metric is the flexibility in changing the internal 
mechanisms of the default user input and graphical output 
subsystems. Examples of such changes include: drawing each 
window in its own buffer to transform a desktop situation where 
occlusion between windows would have occurred to a large 
display situation of the same windows without occlusion; 
modifying the UI components state machines to transform a single 
focus desktop situation to a multi-user multi-touch multi-focus 
situation; changing modal dialog box to block only the user who 
invoked it; etc. While the application being use may influence this 
metric (e.g. an application may support receiving two “mouse 
button down” events at different locations, even it is not supposed 
to happen), achieving a high level of flexibility requires a high 
level of structure. 

2.1.3 Performance 
The third metric is the performance of the interaction. We are 
designing interactive systems; we need them to be responsive in 
both registering an event and rendering the graphical output [ 11]. 
It is influenced by the amount of processing remaining to be done 
by the technology and the amount of unneeded or irrelevant 
processing already done by the application (or the default user 
input and graphical output subsystems). 

2.1.4 Availability and Reusability 
The fourth metric is the availability and the reusability. The 
availability determines the global usefulness of the technology 
(will it work with any application?), while the reusability 
determines the immediate usefulness of a prototype (does it work 
with the same code for all applications or does each application 
require its own supporting plug-in?). 

2.1.5 Difficulty 
The fifth and last metric is the difficulty to implement a prototype.  
Some technologies require few works to have a working 
prototype, and gradually more work to add functionalities; and 
some require a lot of work before having a first prototype, but 
then it will almost be a fully functional system. Of course, some 
others also require very little work to have a finished product. 

We presented five metrics for comparing technologies that would 
enable single-user, desktop-based computer applications to run on 
novel interactive systems. This is not a definitive list, but we think 
it covers the most important points of interfacing an existing, non-
cooperative application with a user input and graphical output 
system it was not conceived for. We will now review six 
technologies that could achieve our goal, and rate them on a five-
value scale (“very low”, “low”, “middle”, “high”, “very high”) 
against each of our metrics (“data structure”, “flexibility”, 
“availability and reusability”, “performance” and “difficulty”).  

2.2 Technologies 

2.2.1 Screenshots 
The simplest technology to get the graphical output of an 
application is beyond any doubt to take screenshots at a regular 
interval. It copies the image displayed on the desktop screen to a 



 

technology-controlled memory buffer. With additional 
information about the size and position of each window 
(information which is provided by all graphical output systems), it 
can segment the screenshot in images of each window and thus 
manage them separately. This technology has a low level of data 
structure. It is also limited in the ways it can rearrange windows 
placements or sizes: when two windows overlap on the desktop 
screen, a part of one of the windows is hidden and cannot be 
reconstructed. Thus, it can’t place this window in positions where 
it would be fully visible. A similar approach was used to interact 
with a desktop computer from a handheld device [ 12]. A full 
screen screenshot of the desktop is displayed with a controllable 
zoom on the handheld, and additional information about the 
menus and the text fields are used to adapt their format for the 
handheld constraints (multi-column menu and shorter lines of 
text).  

2.2.2 Virtual Graphic Card 
The second technology is an improved version of the previous 
one, using a virtual graphic card or a virtual screen. It is the 
approach used by most remote desktop software (e.g. VNC [ 18] 
uses a virtual “VNC hook” graphic card device driver for 
Windows). Metisse [ 4], a “meta window-manager” for 
implementing novel desktop interaction techniques like rotation 
or peeling of windows [ 2], is a modified X-server [ 19] which 
renders windows off screen and recomposes their images in a 3D 
space. While this technology still has a low level of data structure, 
it is more flexible than screenshots. One can create a virtual 
screen with a resolution so high that no windows will ever 
overlap, or create several dozens of virtual screens and open a 
single application per screen, thus grouping all the application 
windows together. Moreover, this technology allows for high 
frame rate with typical desktop content. 

2.2.3 Virtual Keyboard and Mouse 
Both screenshots and virtual graphic card technologies capture the 
graphical output of an application, but don’t allow sending back 

events to it. The third technology is their user input counterpart: a 
virtual keyboard and a virtual mouse. It is integrated in the 
Metisse software, which also allows specifying which window 
should receive the event. This gives some flexibility: the virtual 
mouse cursor can be on two unrelated windows at the same time 
to allow concurrent interaction by two users (but two users still 
can’t interact with the same window without turn taking). Some 
other platforms are limited to a single keyboard and a single 
mouse shared by all applications. The level of structure of these 
events is low. Most likely, the user of the innovative system will 
have to use a mouse-like interaction (with notions of current 
cursor position, click, etc.), and the processing will be limited to 
transforming the coordinates of the event from the large display, 
tabletop,… coordinates to desktop screen coordinates. 

These first three technologies share an advantage: they are 
compatible with all applications and highly generic. While some 
additional rules or processing may be added for a particular 
application to integrate it more consistently with the innovative 
interactive system, any application can have at least their basic 
functionalities without specific programming. 

2.2.4 Scripting 
The fourth technology uses a completely different philosophy. 
Some applications expose a scripting interface. Its purpose is to 
facilitate tasks automation (without using a “macro” of raw mouse 
and keyboard events and replaying it) and applications 
interactions. For example, an application might send a specially 
formatted message to the web browser application to navigate to a 
certain web page, a word processing application might ask a 
spreadsheet application for some data to create a mailing, or a 
script might communicate with the file manager to backup some 
folders. For our purpose, scripting allows to access an application 
data without formatting for a particular type of viewport. A part 
(depending on the application implementation of scripting) of the 
burden of presenting the data in a visual way will be upon the 
technology. While it enables interaction system dependent way of 

Table 1: Technologies to use an existing application with a different model of user input and graphical output. 

 Data Structure Flexibility Availability and 
Reusability 

Performance Difficulty 

     

     

     

     

Screenshots (output) Low 

 

Very low 

 

Very high 

 

Low 

 

Easy 

 

     

     

     

     

Virtual Graphic Card 
(output)  

Low 

 

Low 

 

Very high 

 

High 

 

Middle 

 

     

     

     

     

Virtual Keyboard and 
Mouse (input) 

Low 

 

Very low to low 

 

Very high 

 

High 

 

Easy 

 

     

     

     

     

Scripting (both) Very high 

 

High 

 

Low 

 

Very high 

 

Middle 

 

     

     

     

     

Accessibility API 
(both) 

Output: Middle 

Input: High 
 

Middle 

 

Middle 

 

Middle 

 

Middle 

 

     

     

     

     

UI Toolkit Rewriting 
(both) 

High 

 

Output: Middle 

Input: High 
 

High 

 

Very high 

 

Hard 

 



 

presenting the data, it means a very low reusability, as each 
application has different data. For user input, scripting also has a 
high level of structure and flexibility. Some operations are 
standardized among applications (printing the data, saving to a 
file,…). One could use a personalized “select a file” dialog box, 
even drop the file and folder metaphor, and invoke the “load a 
file” command with the selected file name. Nevertheless, most 
operations are application-dependent, which make scripting a 
technology with low reusability. The communications with the 
application are minimal (structured data is lighter than images, 
and only need to be refreshed when the data changes, and not 
when the viewport changes) and the user interface and the 
interactions are managed by the novel interactive system natively, 
performances are thus maximal. However, this technology is only 
available for applications that do implement scripting. Most Mac 
OS applications tend to have scripting capabilities and use a 
standard scripting language [ 1] introduced in 1992, while other 
OS applications use incompatible scripting languages, even when 
they do have scripting. 

2.2.5 Accessibility API 
The fifth technology uses the accessibility API [ 16,  22] to get a 
description of the user interface and adapt it to the novel 
interactive system. The accessibility API is designed to provide 
alternative user interfaces adapted to disabled users. It can be used 
to plug a user interface for a novel interactive system. The API is 
consistent among different OS, probably due to its recent 
conception, meaning a good reusability. Most recent applications 
support accessibility, and several countries enacted laws to make 
it mandatory for future applications, but older applications cannot 
use this technology. An interesting use of this technology is 
Facades [ 21], which allows end-users to recompose the interfaces 
of their applications. The accessibility API is used to query the 
current position, size, type, and state of the visible widgets of an 
application. On the input side, all possible widget actions can be 
activated via this API (e.g. one can cause selection events, trigger 
buttons, etc.). While it is entirely appropriate to plug a voice 
command interface to select among the visible buttons, it lacks a 
bit of flexibility when it comes to switching to a different 
metaphor than the desktop, due to its close links with it. Indeed, it 
aims at providing access to traditional desktop computer 
environment to more people rather than trying to offer an 
alternative access to its data and processing capabilities. 

2.2.6 User Interface Toolkit Rewriting 
The last technology is to rewrite parts of the user interface toolkit. 
Virtually all graphical applications use a toolkit to build their user 
interfaces. Example of toolkits include GTK+, Qt, Xaw, Motif for 
X Window based operating systems; Cocoa, Carbon, Toolbox for 
Mac OS; and win32 for Microsoft Windows. These toolkits are an 
abstraction layer between the application and the operating 
system: they manage an event queue, translate raw mouse and 
keyboard events in high level commands (e.g. whether the user 
clicked on the “print” menu item or used its keyboard shortcut, 
the application receive a “print” event), provide a library of user 
interface widgets, with their own interaction state machines (e.g. 
when the user click on a window title bar, the application does not 
need to track the mouse moves, compute the offset between two 
successive cursor positions and move the window accordingly) 
and rendering routines, and more. By rewriting parts of the user 

interface toolkit used by the application, one can selectively 
extends or changes the behavior of individual services provided 
by the toolkit. This approach was used as early as 1992 in 
Mercator [ 14] to translate calls to the X Window GUI API to an 
audio interface. 

This technology can achieve a high level of output data structure, 
in both ways given in the metric description. Indeed, by rewriting 
the functions related to UI components creation, it can have a 
structured description of the user interface; while by rewriting the 
functions related to common actions (clipboard, open/save/print 
standard dialog boxes, drag and drop and data exchange, etc.), it 
can have a limited functional description of the application 
internal actions and data representation. This technology also has 
the potential for a high flexibility. For example, it could be used 
to rewrite the event processing functions related to text boxes to 
allow two points of insertion for collaborative editing of the same 
text; or to change the state machine associated with checkboxes to 
activate them with crossing instead of clicking. This technology 
can achieve high level of performances, because it communicates 
with the application through the toolkit API the application was 
design for. This also eliminates the need to rewrite the 
application, as long as it uses the right toolkit. However, it is the 
most difficult technology to implement, and needs a large volume 
of code before producing any results. Several toolkit functions 
would need to be rewritten for each desired change, and great care 
should be given to potential far-reaching consequences in others 
areas of the toolkit. 

Table 1 provides a synthesis of the technologies and how they rate 
against our metrics. 

2.3 Choice of a Technology 
We previously created with the DiamondSpin [ 20] toolkit for 
multi-touch tabletop applications. It is designed as an extension of 
the Java-SWING user interface toolkit: for each standard class 
(JFrame, JMenuBar, JComboBox, etc.) we created a new class 
inheriting from the base class, and added and/or redefined some of 
its methods. Internally, we completely redeveloped the event 
dispatching system to allow concurrent threaded user interaction, 
and the display system to use hardware accelerated 3D graphics. 

A similar approach is used by the subArctic toolkit [ 7], using the 
underlying programming language concepts of subclassing of 
drawable objects (in conjunction with wrapping). The application 
programmer is not required to know about these subclasses to 
write his application [ 5]. 

DiamondSpin was used to create dozens of applications, and we 
noticed a similar trend: we almost never directly called the 
DiamondSpin methods we had added. We just used the existing 
methods, with the extended semantics we gave them (for example, 
we use the existing setFocus to raise a window to the front, 
knowing that it wouldn’t remove the focus from the windows 
owned by the other users of the tabletop). The few additional 
public methods we created were for toolkit and hardware 
initialization and for setting up the user environment (sharing 
policy, windows orientation, and others tabletop-specific 
application-global properties). 

This approach considers tabletop computing as an evolution, not a 
revolution, and our experience seems to fit this philosophy quite 
well. In the same way, desktop operating systems evolution 



 

obsoletes some functions (e.g. in Microsoft Windows, the 
LimitEmsPages API function now does nothing at all because 
modern computers don’t have active 64K memory segments 
anymore), extends some functions (e.g. CreateWindowEx take 
more arguments than CreateWindow, the later calling the former 
with default values for the new arguments) or changes the 
semantics of some functions (e.g. the DS_SYSMODAL flag 
doesn’t create a system-modal window, because there in no longer 
the concept of system modal window (it contradict the concept of 
multitasking); instead it sets the WS_EX_TOPMOST style, to 
create a window that always stay on top but is not system-modal). 

We think we can generalize this successful previous approach to a 
larger code base and more novel interactive systems, by rewriting 
parts of a user interface toolkit. 

3. TOOLKIT REWRITING WITH BINARY 

INTERCEPTION 
We aim at rewriting parts of a user interface toolkit, with the 
ultimate goal to use the existing desktop applications with novel 
interactive systems that expose a different model of user inputs 
and graphical output. We also strive to really integrate the 
application in the interactive system, by modifying the application 
processing of its user input and the application graphical user 
output rendering. These modifications shall be driven by the large 
body of research into interaction techniques and visualizations for 
each interactive system. 

In order to implement these modifications, we must first choose 
which user interface toolkit to modify. We reckon the various 
toolkits will expose different API, prompting for firm choice of a 
single toolkit, and offer support for different applications. 

The way to plug our modified toolkit into applications will also 
influence the availability of our solution. We investigated several 
ways to link the applications with the modified toolkit. 

User interface toolkits comprise thousands of functions; we don’t 
propose to rewrite them all. We see three levels of functionality 
that could be achieve by modifying various subsets of the toolkit 
in goal-dependent ways. We ran experiments to identify the 
implication of various types of modifications, and understand 
functions interdependency. 

3.1 Which Toolkit? 
Toolkits are an abstraction layer between the application and the 
operating system: they manage an event queue, translate raw 
mouse and keyboard events in high-level commands, provide a 
library of user interface widgets, with their own interaction state 
machines and rendering routines, and more. Yet, the different 
toolkits can vary greatly in their implementation: some toolkits are 
object-oriented (e.g. Cocoa for Mac OS; Qt and Xaw for X 
Window) while others are procedural (Carbon and Toolbox for 
Mac OS; win32 for Microsoft Windows; GTK+ for X 
Window,…), some toolkits are native (i.e. embedded in the 
operating system,  Carbon, Toolbox, and win32 are native to their 
respective operating systems; there is no native toolkit for X 
Window based operating systems) while others are separate 
layers, often high level, built on top of the native toolkits (Cocoa, 
MacApp, MacZoop and others for Mac OS; MFC, WTL, VCL, 
.NET, WPF,… for Microsoft Windows are all built on top of the 
procedural win32; dozens of toolkits for X Window, built from 

scratch or from lower-level toolkits, and sometime ported to other 
operating systems native toolkits). In order to achieve our goal of 
using existing applications with novel interactive systems, we 
need to find which toolkit we want to address and partially 
rewrite. We think the most important point to consider is the 
number of closed-source applications using each toolkit. From a 
difficulty of implementation point of view, we should also 
consider choosing a well documented or open-source toolkit, to 
minimize the potential far-reaching consequences of our 
modifications in others areas of the toolkit. 

We choose the win32 toolkit. All the applications running under 
Microsoft Windows (which include the most wanted applications, 
according to our informal user study) use this toolkit, whether 
directly or via another higher level toolkit. All the public 
functions of the win32 API are documented, and Microsoft should 
disclose (as required by the European Commission) the 
documentation of its private API and protocols. A subset of the 
API has been standardized by the European Computer 
Manufacturers Association as ECMA-234 [ 6], any application 
written against this standard is guaranteed to run with any ECMA-
234 implementation. Furthermore, we can use the open-source 
Wine/Winelib [ 24] and PEACE [ 17] projects, which aim at 
reimplementing the win32 API from scratch to run Windows 
applications with others operating systems. 

3.2 Linking the Applications with the 
Modified Toolkit 
The API functions we wish to extend are not part of the 
applications. They live in external libraries. We have several 
options to extend them: 

• If both the application and the library are open-source, we can 
modify the library sources and link the application (without 
modifications) against the new library. In our case, the libraries 
are not open-source, tough we could use the Wine or PEACE 
implementation of win32 API as a base. 

• If only the application is open-source, we can write a library 
containing the functions we rewrote and proxy functions for the 
others. We link our library against the original library (the 
proxy functions are one-line functions calling the original 
functions), and the application against our library. 

• If the application is not open-source, we need to dynamically 
intercept its API functions calls and reroute them to our own 
functions at run-time: we need a binary interception package. 

The Center for Bioinformatics and Computational Biology of the 
University of Maryland uses this last option to achieve a goal 
similar to ours [ 13]. They have a large number of bioinformatics 
applications they wished to use with the distributed computing 
platform BOINC (SETI@home, the World Community Grid,…). 
Instead of rewriting the application, and even instead of 
recompiling them, they wrote an adaptation layer between the 
legacy applications and the operating system (in their case, mostly 
file and folder related functionalities, which BOINC needs to 
handle) and dynamically intercepted the API calls. The adaptation 
layer functions need to have the exact same arguments and return 
types as the original API functions, but are free to call others 
functions (e.g. BOINC functions), the original API (with or 
without modifying the arguments first), or do any processing they 
need. 



 

A similar approach is used by Chromium: it intercepts the 3D 
rendering functions of OpenGL and modifies their behavior on the 
fly, e.g. to add clipping plane to produce exploded views of 3D 
architectural environments such as multi-story buildings [ 15]. 

As the University of Maryland software includes Microsoft 
Windows, Mac OS X and UNIX software, they reviewed the 
binary interception techniques on these three operating systems. 
In our case, tough, we’ll only use the Windows version: the 
Detours package from Microsoft Research [ 9]. 

3.3 Which Kind of Modifications? 
During our design sessions, we identified three distinct goals 
toolkit modifications would enable, which turn out to be three 
ways of modifying the functions of the toolkit. 

We could just want to obtain information about the application. 
Technologies like the accessibility API already allow to 
programmatically retrieve information about an application user 
interface, but we can get more detailed information by 
intercepting the API calls to the functions which create and/or 
update the interface. For this goal, very simple functions, just 
storing and processing the arguments (and/or the return value) of 
the API calls the application makes, and calling the actual win32 
function, are sufficient. 

We could want to add behaviors to the application. For example, 
introducing rotating windows or relocatable popup menus. This 
goal requires associating additional data to the existing objects, 
and extending functions that should use our data. As in the 
previous case, the extended functions call the actual win32 
functions to retrieve the “traditional” data associated with an 
object, while a hash-map can be used to store the additional data. 
For rotating windows, it would require storing a rotation point 
and angle for each window, and applying a rotation matrix to the 
graphical device context before the window gets rendered. 
Relocatable menus require adding a dragging control to each 
popup menu, and updating the existing x and y coordinates and 
calling the menu rendering function when the control is dragged. 

Finally, we could want to modify or remove behaviors of the 
application. For example, activating buttons by crossing instead of 
clicking, or allowing several users to each have a separate focus. 
These goals are incompatible with some current data structures 
used by the win32 API: it has a single variable to store the 
identifier of the currently focus widget, for example, and it is 
impossible to store more than one identifier in this space. It 
requires creating our own data structures, which mean rewriting 
all the functions that create, destroy or access to these data 
structures. The new functions would not call the win32 functions 
they replace, and the original win32 data structure would not be 
created. In consequence, it is the most difficult type of 
modification to implement. One must be sure to have rewritten all 
the functions which use these data structures (a discussion of how 
to identify these functions is in the following section).  

Our first example, activating buttons by crossing instead of 
clicking, would require a new state machine, new state variables 
(storing from which side of the button the cursor entered instead 
of storing if the mouse button is currently pressed) and new events 
processing functions. The different states a checkbox can have 
would be changed. These states (detailed in Table 2) are both 
highly dependant of a mouse cursor styled interaction, and tightly 

integrated in the existing data structure and state machine of a 
checkbox. 

Our second example, allowing several users to each have a 
separate focus, requires creating a global array of focused widgets, 
and rewriting the functions that query whether a certain widget is 
focused (search in the array), gets the focused widget (it returns a 
single widget, so figure out which user action triggers this 
function call and return this user focused widget), changes the 
focused widget (remove the focus from the widget returned by the 
function that gets the focused widget, and focus the new), and 
several more. New global variables would need to be created, for 
example to know which user action triggers this function call, we 
could create a global “current user” variable. When the 
application process an event from the multi-user input device, we 
update this variable, we update this variable with the input device 
supplied user ID. As the events are always processed 
sequentially [ 6], all the API calls the application would make 
could query this variable to know, e.g., which user focus to 
change. Should the application start a new thread in response to a 
user event, this thread would be tagged with the current ID for the 
rest of its execution. 

3.4 Which Functions of the Toolkit? 
We conducted an experiment to check the level of functions 
interdependency and redundancy in the Microsoft implementation 
of win32. We choose a set of win32 UI functions that is as 
independent as possible of the other functions: the pull-down and 
popup menu API. We wrote a menu library that overloads each 
and every menu API function with a custom function that simply 
print its name, its arguments and call the original function. 

We ran several common applications with this library and found 
that several functions in the win32 menu API are in fact shortcuts 
or preprocessors for a few core functions. 

For example, the function LoadMenu(ResourceID) calls 
FindResource and LoadResource with the resource id to load the 
menu descriptor in memory. It then calls 
LoadMenuIndirect(MenuDescriptor) on that descriptor. 

The LoadMenuIndirect function parses the in-memory menu 
descriptor, calls CreateMenu() to create an empty menu, 
InsertMenuItem(Menu, ItemName,…) to add the menu items (with 
the appropriate arguments from the menu descriptor) and calls 
itself recursively if the descriptor includes a submenu. Thus, if we 
want to intercept the creation of an application menus (e.g. 
because we want to use a pie menus library), we just need to 
rewrite the CreateMenu and InsertMenuItem functions, without 
mangling the menu description parser nor having to check 

Table 2: The different states involved in activating a 

Windows checkbox with the mouse cursor. 

  

When the cursor is not over the checkbox and 
the checkbox has not been clicked on 

  

When the cursor hover over the checkbox, or 
when the user clicked on the checkbox and then 
dragged away from the checkbox with the mouse 
button still pressed 

  

While the mouse button is pressed and the 
cursor is over the checkbox 



 

whether the application uses LoadMenu, LoadMenuIndirect or 
manual CreateMenu and InsertMenuItem to create its menus. 

We took a look at the Wine [ 24] and PEACE [ 17] win32 
reimplementation projects, and confirmed the calling tree we 
observed with the instrumented Microsoft implementation is 
consistent with the calling tree that would be produced by Wine 
and PEACE code. For example, the code below for LoadMenu 
comes from the Wine project: 
HMENU WINAPI LoadMenu(HINSTANCE instance, LPCSTR name){ 

  HRSRC hrsrc=FindResource(instance,name,(LPSTR)RT_MENU); 

  if (!hrsrc) return 0; 

  return LoadMenuIndirect( 

            (LPCVOID)LoadResource(instance, hrsrc)); 

} 

And here is the code from the PEACE project: 
HMENU WINAPI LoadMenu(HINSTANCE h, LPCWSTR name){ 

  HRSRC r; 

  HGLOBAL rh; 

  MENUTEMPLATE *tmpl; 

  if ((r = FindResource(h, name, (LPCWSTR)RT_MENU)) == 0) 

    return 0; 

  if ((rh = LoadResource(h, r)) == 0) 

    return 0; 

  tmpl = LockResource(rh); 

  return LoadMenuIndirect(tmpl); 

} 

This confirms both the usefulness of these sources as a tool to 
understand win32 internals, and the independence of the shortcut 
and preprocessing functions from the actual data structure of the 
MENUTEMPLATE and HMENU types. We can change the 
internal representation of a menu: the functions we have not 
modified and the applications will use this new data structure 
through the opaque pointer HMENU. 

Among the 39 menu-related functions, we identified 20 “core” 
functions, including 5 trivial getters. 

4. IMPLEMENTATION 
In order to validate our approach, we created two proof-of-
concept implementations: replacing the pull-down and popup 
menus of an application by custom menus, and extending the 
windows management with rotation, zooming, peeling-back, and 
stacking of windows. 

4.1 Replacing Pull-down Menus 
Our first proof-of-concept implementation replaces the pull-down 
menus by a custom implementation. All menus-related activity is 
sent to another computer via a network link. This computer 
displays the menus of all connected applications, and allows for 
selecting menu items.  

The library for this example intercepts calls to the menu “core” 
functions identified previously (detailed in Table 3), but does not 
call the original win32 function when processing an intercepted 
call. The library maintained its own data structure of the menus. 
As the function calls are not forwarded to the original functions, 
win32 does not create the “real” menus. In consequence, we also 
rewrote the getter functions to fetch the data from the library data 
structure. 

 

 

 

 

Table 3: The menu-related functions of the win32 API and 

how they relate to each other. 

API function Is a shortcut/preprocessor for 
CreateMenu 
DestroyMenu 
InsertMenuItem 

None 

GetMenuItemCount 
GetMenuItemID 
GetMenuState 
GetMenuString 
GetSubMenu 

None: access menu structure, 
but are trivial 

GetMenuInfo 
GetMenuBarInfo 
GetMenuItemInfo 

None: convert the opaque 
structure in a documented read-
only structure 

CheckMenuItem  
CheckMenuRadioItem 
GetMenuDefaultItem 
HiliteMenuItem 
ModifyMenu 
RemoveMenu 
SetMenuDefaultItem 

None: implement an algorithm 
which accesses menu structure 
directly 

EnableMenuItem None: calls several menu 
functions, and implements a 
post-processing algorithm 

DrawMenuBar None: calls non-menu-related 
drawing functions 

LoadMenuIndirect CreateMenu, InsertMenuItem, 
LoadMenuIndirect (recursive) 

LoadMenu LoadMenuIndirect 
CreatePopupMenu CreateMenu with MF_POPUP flag 
DeleteMenu DestroyMenu and RemoveMenu 
InsertMenu InsertMenuItem with default 

values for additional parameters 
AppendMenu InsertMenu with position = -1 
TrackPopupMenu 
TrackPopupMenuEx 
EndMenu 

Shortcuts for event queue 
messaging functions 

GetMenu Calls a generic win32 function 
to access opaque data structure 

SetMenu IsMenu, generic win32 function 
to access opaque data structure 

IsMenu Try to GetMenu, and clean-up 
and return an error if it failled 

GetSystemMenu GetMenu 
GetMenuCheckMark-
Dimensions 
GetMenuItemRect 

Call generic win32 functions for 
screen coordinates conversion 

MenuItemFromPoint GetMenuItemRect 
SetMenuInfo 
SetMenuItemBitmaps 
SetMenuItemInfo 

ModifyMenu 



 

The main highlights of this implementation are the functions 
DrawMenuBar, CreateMenu, DestroyMenu, InsertMenuItem, and 
SetMenu. 

DrawMenuBar is called when a window menu bar needs to be 
drawn. The library implementation does nothing, as the whole 
menu system is separated from the win32 windowing system. 

CreateMenu, DestroyMenu and InsertMenuItem are used, directly 
or via the preprocessing and shortcut functions, to manipulate the 
menus content. The library implementation updates its own menu 
data structure. The various getters defined in the win32 API are 
also rewritten to fetch their data from this structure. 

The SetMenu function is used to associate a menu with a window. 
As the menu has never been created by win32, our 
implementation should not call the original SetMenu function. 
Instead, it stores the window handle in the menu data. When a 
menu item is selected, the appropriate message is sent to this 
window handle. 

This set of functions provides enough data to maintain an updated 
description of every menu used by the applications. This 
description is sent over the network to the control computer. It 
displays the menus in a relevant form (for our test, as a textual 
hierarchy of menus items) and managed the interactions with it. It 
sends back regular win32 menu messages to the relevant 
application, which performs the corresponding action. 

The library code written for this example comprises 21 functions 
(the 20 core menu functions and SetMenu), for a total of 500 lines 
of C code.  The control computer software, which receives the 
menu descriptions over a network link and handles the 
interactions with the user, consists of 200 lines of Java. 

4.2 Extending the Window Management 
We added rotation, peeling-back, stacking, zooming, and 
duplication capabilities to regular windows. We used the 
DiamondSpin [ 20] tabletop toolkit to provide the interactions and 
rendering functions, and a custom library to link the applications 
with it. 

The library intercepts calls to the CreateWindow and 
DestroyWindow functions. Each time CreateWindow is called to 
create a user interface window1, the library calls the equivalent 
DiamondSpin function, and then calls the original win32 function. 
It registers the link between the win32 data structure, identified by 
its opaque HWND pointer, and the DiamondSpin data structure, 
identified by a DSFrame instance, in a hash-table. Similarly, it 
intercepts calls to DestroyWindow, decrements the DSFrame 
instance use count (DiamondSpin being written in Java, the 
instance will be freed by the garbage collector) and removes the 
corresponding hash-table entry. 

As we are using two independent, separately developed window 
management toolkits (the win32 API and DiamondSpin), both 
toolkits store the basic window attributes (position, title,…). 
During window creation, DiamondSpin attributes are initialized 
with the parameters passed to win32 by the application. To keep 
these common attributes synchronized, the library intercepts calls 

                                                                 
1 CreateWindow is also used in win32 to create message only 
windows, Dynamic Data Exchange (DDE) windows, and others 
non-visible non-interactive windows. 

to win32 functions modifying them, and calls the equivalent 
DiamondSpin function. Likewise, DiamondSpin initiated 
modifications (i.e. user interaction results) are monitored (using 
the listener facilities built in DiamondSpin), and propagated to the 
win32 data structure. 

Modifications to unshared attributes, on either side (e.g. window 
angle in DiamondSpin, window content in win32), are managed 
natively by the relevant toolkit. 

Finally, the library intercepts calls to the EndPaint win32 
function. This function is called when a window visual content 
has been updated. The content is copied, as an image, to 
DiamondSpin to fill the corresponding DSFrame. In the current 
form of this proof of concept, the users cannot interact with this 
content image from the tabletop. They are limited to the window 
managements interactors provided by DiamondSpin (moving 
windows, resizing, zooming, peeling back, stacking,…). 

All in all, we extended some thirty win32 functions in this library, 
a summary of which is provided in Figure 1. This amounts to 
5000 lines of code, a large part of which was auto generated by a 
script. Indeed, most functions just need to convert their arguments 
from C type to Java type or Java type to C type and call the 
equivalent function in the other toolkit. 

5. CONCLUSION 
Single-user, desktop-based computer applications are pervasive in 
our daily lives and work. These applications are not compatible 
with new interactive systems. We think they should be: this ability 
to run existing desktop applications on novel interactive systems 
is needed for a large deployment of these systems in a production 
environment. 

In this article, we reviewed several approaches to enable this user 
interface compatibility. We rated these approaches against five 
metrics: data structure, flexibility, availability and reusability, 
performance, and difficulty. 

We think user interface toolkit rewriting is the most sensible 
approach. This approach enables communication with the legacy 
applications in a highly structured way, and provides a reasonable 
amount of flexibility in changing user input and graphical output 
internal mechanisms. It also offers native-like performances, 

HWND 

int x 
int y 
HWND parent 
HMENU menu 
... 

DSFrame 

int x 
int y 
float angle 
... 
image im 

Win32 API data DiamondSpin data 
Library data and 

functions 

Hash-table 
HWND→DSFrame 
CreateWindow 
DestroWindow 

EndPaint 

Copy image buffer 

Common data 
synchronization 

SetWindowPos↔
SetX/SetY... 

Figure 1: Extending the window management 

 



 

thanks to its channel of communication with the applications. 
Indeed, the approach is to rewrite key functions of a user interface 
toolkit. The rewritten functions can do anything (including calling 
the original function, or any other functions) but must have the 
same arguments list and return type than the original toolkit 
function. As several such user interface toolkits exist, we choose 
to extend to win32 toolkit used in Microsoft Windows. 

Our two proof-of-concept implementations show it is a viable 
approach with a great potential. However, it will require a large 
amount of work to build a working prototype. Writing a full 
implementation is out of the scope of a research study, tough such 
a technology would be a revolution for the novel user interfaces 
and interactive systems community. It would enable creation of 
high-fidelity prototypes using real applications and data, and 
opens the door to long term user studies and field studies. 

We call this approach user interface virtualization. Indeed, 
running applications designed for a certain environment in a 
different environment which emulates the capabilities of the 
application native environment is reminiscent of CPU 
virtualization (e.g. running PowerPC applications on an i386 CPU 
with software emulating PowerPC instructions with a sequence of 
i383 instructions). User interface virtualization may well become 
a research field of its own, as it presents some new and very 
interesting problems of software design and engineering. 

We would be delighted to work with the community on an effort 
to shape the outline of, and implement, a hardware-independent 
library for using exiting applications with novel interaction 
systems and interaction styles. 

6. ACKNOWLEDGMENTS 
We whole heartily thank Olivier Chapuis and Nicolas Roussel 
from the LRI for their help with the Metisse and the Façade 
sections. 

This work was supported by a grant from the Région Île-de-
France (Digitéo Labs). 

7. REFERENCES 
1. Apple Inc. AppleScript: The Language of Automation. 
http://www.apple.com/applescript/ 

2. Beaudouin-Lafon, M. Novel Interaction Techniques for 
Overlapping Windows. Proc. UIST 2001, pp. 153-154 

3. Chapuis, O., Blanch, R., Beaudouin-Lafon, M. Fitts' Law in 
the Wild: A Field Study of Aimed Movements. LRI Technical 
Report 1480, Laboratoire de Recherche en Informatique 
(2007). 

4. Chapuis, O., Roussel, N. Metisse is not a 3D desktop! Proc. 
UIST’05, pp. 13-22. 

5. Edwards, W. K., Hudson, S., Rodenstein, R., Smith, I., 
Rodrigues, T. Systematic output modification in a 2D UI 
Toolkit. Proc. UIST'97, pp. 151-158. 

6. European Computer Manufacturers Association. Standard 
ECMA-234, Application Programming Interface for Windows 
(APIW), December 1995.  
http://www.ecma-international.org/publications/standards/Ecma-234.htm 

7. Guimbretiere, F., Stone, M., Winograd, T. Fluid Interaction 
with High-Resolution Wall-Size Displays. Proc. UIST 2001, 
pp. 21-30. 

8. Hudson, S. E., Smith, I. SubArctic UI toolkit user’s manual. 
Technical report, College of Computing, Georgia Institute of 
Technology, 1996. 

9. Hunt, G., Brubacher, D. Detours: Binary Interception of 
Win32 Functions. Proc. 3rd USENIX Windows NT 
Symposium, pp. 135–143. 

10. Hutchings, D. R., Smith, G., Meyers, B., Czerwinski, M., 
Robertson, G. Display space usage and window management 
operation comparisons between single monitor and multiple 
monitor users. Proc. AVI’04, pp. 32–39. 

11. MacKenzie, I. S., Ware, C. Lag as a determinant of human 
performance in interactive systems. Proc. INTERACT'93 and 
CHI'93, pp. 488-493. 

12. Myers, B.A., Peck, C.H., Nichols, J., Kong, D., Miller, R. 
Interacting At a Distance Using Semantic Snarfing. Proc. 
UbiComp'2001 pp. 305-314. 

13. Myers, D. S., Bazinet, A. L., Intercepting arbitrary functions 
on Windows, UNIX, and Macintosh OS X platforms. 
Technical Report CS-TR-4585, UMIACS-TR-2004-28, 
University of Maryland (2004). 

14. Mynatt, E. D., Edwards, W. K. Mapping GUIs to auditory 
interfaces. Proc. UIST’92, pp. 61-70. 

15. Niederauer, C., Houston, M., Agrawala, M., Humphreys, G. 
Non-invasive interactive visualization of dynamic architectural 
enviuronments. Proc. I3D’03, pp 55-58. 

16. Parente, P., Clippingdale, B. Linux screen reader: extensible assistive 
technology. Proc. Assets’06, pp. 261-262. 

17. PEACE project. 
http://chiharu.haun.org/peace/status.html 

18. Richardson, T., Stafford-Fraser, Q., Wood, K. R., Hopper, A. 
Virtual Network Computing. IEEE Internet Computing, Vol. 
2, No. 1 (1998), pp. 33-38. 

19. Scheifler, R. W., Gettys, J. The X window system. ACM 
Transactions on Graphics (TOG), Vol. 5, Issue 2 (April 
1986), pp. 79-109. 

20. Shen, C., Vernier, F., Forlines, C., Ringel, M. DiamondSpin: 
An Extensible Toolkit for Around-the-Table Interaction. Proc. 
CHI 2004, pp. 167-174. 

21. Stuerzlinger, W., Chapuis, O., Phillips, D., Roussel, N. User 
Interface Façades: Towards Fully Adaptable User Interfaces. 
Proc. UIST’06, pp. 309-318. 

22. Thatcher, J. Screen reader/2: access to OS/2 and the graphical 
user interface. Proc. Assets’94, pp. 39-46. 

23. Ullmer, B., Ishii, H. Emerging Frameworks for Tangible User 
Interfaces. IBM Systems Journal, Vol 39, Issue 3-4 (July 
2000), pp. 915-931. 

24. “Wine Is Not an Emulator” project. 
http://www.winehq.org/about/ 

 


